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The recent surge of interest in the field of host-guest
chemistry1 has resulted in several applications of host molecules
as organic catalysts.2 In this communication we report the arti-
ficial enzyme behavior of xylene-bridged hosts1 and2 (Figure
1). Both compounds catalyze the base-promoted decomposition
of 5-nitrobenzisoxazole3 to cyanophenol4with unusually large
rate accelerations (Figure 2), via a Michaelis-like complex. The
fragmentation was originally investigated by Kemp, who
established it as an E2 elimination which could be performed
by simple amines.3 More recently, Hilvert and co-workers have
reported catalytic antibodies which perform the reaction with
impressive rate enhancements and turnover numbers.4

Hosts 1 and 2 bind phenols tightly in nonpolar organic
solvents.5 When either host is mixed with isoxazole36 in
CDCl3, rapid conversion to4 takes place, resulting in the
formation of the host-product complex, as observed by1H-
NMR.7 A kinetic isotope effect of 5.2 (kH/kD) is observed in
the reaction with host1,8 and cyanophenol4 is the only
observable product.

The kinetics of the system are described by eq 1; there is a
fast pre-equilibrium, followed by a slow intracavity reaction,
product release, and subsequent sequestration of the host as the
product complex. The kinetic parameters (association constants
for substrate and product, intracavity rate constant) were
obtained by nonlinear least-squares fitting of time-concentration

data to this model (Figure 3), using the DNRP-RKF program
developed by Duggleby.9 The parameters for the reaction
with proximal xylene host1 areKa ) 96( 12 M-1, k ) (6.3
( 0.3)× 10-4 s-1, andKp ) 6 × 1011 M-1. The large value
for Kp is consistent with our previous results.10 The derived
values for both association constants were corroborated by
independent titrations.11,12 The parameters for the distal xylene
host2 areKa ) 13( 1 M-1, k ) (7.6( 0.5)× 10-4 s-1, and
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Figure 1. The “enzymes”.

Figure 2. The system: (a) general reaction and (b) mechanism of
intracavity process.

Figure 3. Plots of [1‚4] versus time for the reaction of proximal xylene
host1 (7 mM) and isoxazole3 in CDCl3 at room temperature. The
initial isoxazole concentrations were: (b) 45, (2) 16, and (9) 10 mM.
Solid lines represent derived fits as described in text.
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Kp ) (3.7 ( 1.5) × 104 M-1. Strong product inhibition is
observed, in agreement with the derived higherKa for the
product. The degree of rate acceleration was measured by
obtaining the second-order rate constants for the reaction of3
with model pyridines5-7 (Figure 4).13 The results are also
listed in Table 1.
The structure of the host-product complexes were examined

by both1H-NMR and X-ray crystallography. The chemical shifts
of free and bound species (Table 2) are consistent with guest
intercalation into the host cavity, as seen previously.14 In both
complexes the guest proton nearest to the xylene spacer is shifted
upfield by more than 3.8 ppm. The crystal structure of the1‚4
complex (Figure 5) confirms this binding model. The guest is
clearly within the cavity and is almost perfectly positioned for

both stacking interactions15 with the napthalene rings and an
edge-face interaction16 with the xylene bridge.17 The guest
orientation reveals that product inhibition occurs after initial
dissociation18 and is thus unrelated to the catalytic process itself.
The above observations demonstrate that hosts1 and2 are

competent artificial enzymes. They promote reaction via a
host-substrate complex, analogous to enzymic Michaelis
complexes. Comparison of second-order rate constants (Table
1) reveals that both hosts accelerate the reaction approximately
1000-fold, with effective molarities of 63 and 76 M.19 The
decreased efficiency of acyclic models, even those as similar
as5, and the severe product inhibition demonstrate that a well-
defined, appropriately functionalized cavity is essential.
The source of enzymatic rate accelerations has been the

subject of much controversy in the literature.20-23 The ac-
celerations observed here, though small in comparison to those
observed with Hilvert’s catalytic antibodies,24 are nonetheless
significant. They are unusual in that large rate accelerations
are observed despite the absence of strained or conformationally
rigid ground states normally associated with intramolecular
catalysis. The host compensates with two primary weapons.
The first is the complexation-induced proximity of the pyridine
nitrogen to the proton which must be removed. This allows
for rate enhancement in accord with Menger’s spatiotemporal
effect.21,25 In addition, the napthalene rings are available for
dispersion-mediated selective stabilization of the highly polariz-
able transition state. Although the importance of such an
aromatic microenvironment has been noted by both Kemp3d and
Hilvert,4 the reaction of5 in benzene was only slightly
accelerated compared to that in chloroform.26 The achievement
of such large increases in rate with so few tools represents a
triumph for rationally designed artificial enzyme construction.27
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Figure 4. Control compounds.

Table 1. Relative Rates of Isoxazole Ring Opening in CDCl3 at
25 °C

host1 host2 5 6 7

ka (s-1 M-1) 6.1× 10-2 9.8× 10-3 1.5× 10-5 1.9× 10-4 1.0× 10-5

krel 5869 950 1.4 18 1

a For hosts1 and2 the second-order rate constantk) k(cavity) (Ka),
wherek(cavity) is the derived first-order rate constant obtained from
the kinetic analysis.

Table 2. Free and Complexed Chemical Shifts of Cyanophenol4

proton free 1‚4 ∆δ 2‚4 ∆δ

H3 7.14 5.13 2.01 5.72 1.42
H4 8.38 3.76 4.62 6.48 1.90
H5 8.48 6.89 1.59 4.63 3.85

Figure 5. X-ray structure of1‚4. Only the guest hydrogens are
included. The phenolic proton is hydrogen bonded to an external guest
molecule, which is in turn hydrogen bonded to the pyridine nitrogen.
The external guest is an artifact of the crystallization process, and its
presence during the reaction is not consistent with the observed data.
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